JOURNAL OF THE AMERICAN CHEMICAL SOCIETY

(Registered in U. S. Patent Office) (C) Copyright, 1956, by the American Chemical Society)

PHYSICAL AND INORGANIC CHEMISTRY

[Contribution from the McPherson Chemical Laboratory, The Ohio State University]

The Vapor Phase Photolysis of Trifluoroacetophenone and Mixtures of Trifluoroacetophenone and Trifluoroacetone ${ }^{1}$

By Robert M. Smith and Jack G. Calvert ${ }^{2}$ Received January 13,1956

The gas phase photolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ is studied at various temperatures, concentrations, and intensities of $3660 \AA$., $3130 \AA$., and full mercury arc light. The major gaseous products are $\mathrm{CO}, \mathrm{CF}_{3} \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ are identified in the condensable products. A chemically unreactive, clear polymer film formed on the reaction cell window during the photolysis. In experiments at high absorbed light intensities, $\mathrm{CF}_{3} \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ are formed primarily in the homogeneous reactions: $\mathrm{CF}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3} \rightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCF}_{3}$ (a), and $2 \mathrm{CF}_{3} \rightarrow \mathrm{C}_{2} \mathrm{~F}_{6}$ (b). The activation energy difference $E_{\mathrm{a}}-E_{\mathrm{b}} / 2=7.2 \pm 0.5 \mathrm{kcal} /$ mole; the ratio of collision theory P-factors $P_{\mathrm{a}} / P_{\mathrm{b}}{ }^{1 / 2}$ is in the range $10^{-4} 10^{-6}$. A large fraction of the CF_{3} radicals formed photochemically do not appear in the gaseous reaction products. It is proposed that these add to the aromatic nucleus of the parent ketone and initiate polymer formation. In the photolyses of mixtures of $\mathrm{C}_{6} \mathrm{H}_{5}$ COCF_{3} and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$, the high temperature chain reaction of $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ involving CO and CH_{3}-containing species is confirmed. The expected product $\mathrm{CF}_{3} \mathrm{COCF}_{3}$ could not be detected in the reaction products of $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ photolyses. Thus, the previously proposed reaction sequence: $\mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \rightleftarrows \mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CF}_{3}\right)_{2}, \mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CF}_{3}\right)_{2} \rightarrow \mathrm{CH}_{3}+\mathrm{CF}_{3} \mathrm{COCF}_{3}$, appears to be unimportant. The generation of CH_{3} from CF_{3} radicals probably occurs by some other undefined heterogeneous path.

This work was initiated to study the photolysis of pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and to determine its efficiency as a CF_{3} radical source in the near ultraviolet. In view of the high extinction coefficient for $\mathrm{C}_{6} \mathrm{H}_{5}$ COCF_{3} at $3660 \AA$., it was supposed that selective photodecomposition of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ in $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ mixtures could be effected at this wave length. If CF_{3} radicals could be produced in this manner, their interaction with $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ molecules could be determined to test the suggested mechanism of $\mathrm{CH} \mathrm{COCF}_{3}$ chain decomposition ${ }^{3}$

$$
\begin{gather*}
\mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{CH}_{3} \mathrm{CO}\left(\mathrm{CF}_{3}\right)_{4} \tag{1}\\
\mathrm{CH}_{3} \mathrm{CO}_{2}\left(\mathrm{CF}_{3}\right)_{2} \longrightarrow \mathrm{CH}_{3}+\mathrm{CF}_{3} \mathrm{COCF}_{3} \tag{2}\\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{6}+\mathrm{CF}_{3} \mathrm{CO}_{4} \\
\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{CH}_{4}+\mathrm{CH}_{2} \mathrm{COCF}_{3} \\
\mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{CH}_{2} \mathrm{COCF}_{3} \\
\mathrm{CF}_{3} \mathrm{CO} \longrightarrow \mathrm{CF}_{3}+\mathrm{CO} \\
\mathrm{CH}_{2} \mathrm{COCF}_{3} \longrightarrow \mathrm{CH}+\mathrm{CF}_{3} \tag{6}
\end{gather*}
$$

The identification of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CF}_{3} \mathrm{CH}_{3}$ and/or $\mathrm{CF}_{3} \mathrm{COCF}_{8}$ products from these photolyses would provide evidence for the suggested scheme.
(1) Taken from the Thesis of R. M. Smith submitted in partial fulfillment of the requirements for the Ph.D. degree, The Ohio State University, 1955. Presented before the Division of Physical and Inorganic Chemistry, 129 th National Meeting of the American Chemical Society, Dallas, Texas, April, 1956.
(2) Author to whom communications should be addressed.
(3) R. A. Sieqer and I. (i. Calvert. This Journal, 76,5197 i954)

Experimental

Apparatus.-The all-glass photolysis system consisted of a quartz photolysis cell (15.0 cm . long, 3.0 cm . diam), a glass circulating pump, trap, two high vacuum stopcocks lubricated with high temperature silicone grease, and a sickle gage. These parts were suspended in a large air thermostat which was maintained at $100 \pm 1^{\circ}$ by a system of heaters, Fenwall regulator and circulating fan. Radiation from a Hanovia type A ($\mathrm{S}-500$) burner (run on a regulated 3.00 amp. d.c. current) was filtered to isolate wave lengths 3660^{4} and $3130 \AA .{ }^{5}$ and was also used unfiltered in some experiments. The light beam was always well collimated by a series of lelises and stops so that a fairly homogeneous beam of radiation filled the cell volume (106 cc .) almost completely. A photomultiplier-amplifier was used to measure fractions of light absorbed at wave lengtlis 3660 and $3130 \AA$. Absorptions of full are radiation were estimated from these values together with Fig. 1 and the manufacturet's data for the relative intensities of the wave lengths inl the arc spectrum. Relative absorption by $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ at similar concentrations can be compared from the $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ and $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{COCF}_{8}$ (B) curves. Curve A was determined at a much lower concentration to show best the nature of the absorption band. Absolute intensities were estimated by $\mathrm{K}_{3} \mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}$ actinometry ${ }^{6}$ at intervals during the course of the photochemical runs. The total quanta entering the cell/cc.-sec. $\times 10^{-12}$ were: $3660 \AA ., 20.4 ; 3130 \AA ., 4.39$ (av. 6 detns.); full arc, 66.1. The full arc value was calculated using a weighed

[^0]average quantum yield of 1.15 for the ferrioxalate decomposition. (Approximately half of the absorbed radiation was below $3000 \AA$.) The results of photolyses of mixtures of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ with $3130 \AA$. were compared with results of separate photolyses of the individual components at the same conditions of concentration, temperature and absorbed light intensity. Uniform density filters reduced the incident intensity used for the pure $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ photolyses so that the intensity of light absorbed by $\mathrm{CH}_{3} \mathrm{CO}-$ CF_{3} was approximately the same as in mixture photolyses with which comparison was made.

Fig. 1.-The ultraviolet absorption spectra of $\mathrm{C}_{6} \mathrm{H}_{5}{ }^{-}$ COCF_{3} and $\mathrm{CH}_{3} \mathrm{COCF}_{3}: \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}(\mathrm{~A})$, vapor at 3 mm . ($1.5 \times 10^{-4} M$), $25^{\circ}, 10 \mathrm{~cm}$. path length; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}(\mathrm{~B})$, $1.0 \times 10^{-2} M$ in CCl_{4} solution, $25^{\circ}, 5 \mathrm{~cm}$. path length; $\mathrm{CH}_{3} \mathrm{COCF}_{3}$, vapor at 206 mm . $\left(1.1 \times 10^{-2} \mathrm{M}\right), 30^{\circ}, 5 \mathrm{~cm}$. path length.

Materials. $-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ were purchased from the Caribou Chemical Co. and purified by fractionation at reduced pressures in a high vacuum system. High purity samples of $\mathrm{CF}_{3} \mathrm{H}, \mathrm{C}_{2} \mathrm{~F}_{6}$ and $\mathrm{CF}_{3} \mathrm{CH}_{3}$ were provided by the Organic Chemicals Department of E. I. du Pont de Nemours and Co. $\mathrm{C}_{2} \mathrm{H}_{6}$ and CH_{4} reference gases were Phillips Research Grade. A sample of $\mathrm{CF}_{3} \mathrm{COCF}_{3}$ was furnished by Dr. Robert R. Brown of The Ohio State University.
Product Analysis.- CO and CH_{4} were removed following photolysis using a Toepler pump with the other products condensed at $\mathrm{N}_{2}(1)$ temperature. $\mathrm{CF}_{3} \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{~F}_{8}$ (together with a small amount of CO_{2} and $\mathrm{C}_{6} \mathrm{H}_{6}$) were removed at Dry Ice temperature after photolyses of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$. Following photolyses of pure $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ and mixtures of the two ketones, the second fraction containing $\mathrm{CF}_{3} \mathrm{H}, \mathrm{C}_{2} \mathrm{~F}_{6}, \mathrm{CH}_{3}-$ CF_{3} and some $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ was removed at -110 to -100° using a modified Ward still.? There was essentially complete recovery of all products except $\mathrm{CF}_{3} \mathrm{CH}_{3}$ which was about 10% low. ${ }^{3} \mathrm{CO}$ was analyzed by reaction with $\mathrm{Ag}_{2} \mathrm{O}$ using a Blacet-Leighton gas analysis system. ${ }^{8}$ In several experiments portions of the low temperature fraction were examined mass spectrometrically for SiF_{4} before the $\mathrm{Ag}_{2} \mathrm{O}$ treatment. $\mathrm{CF}_{3} \mathrm{H}, \mathrm{C}_{2} \mathrm{~F}_{6}, \mathrm{CF}_{3} \mathrm{CH}_{3}, \mathrm{CH}_{4}$ and $\mathrm{C}_{2} \mathrm{H}_{6}$ were determined using a General Electric analytical mass spectrometer. Very minor amounts of CO_{2} and $\mathrm{C}_{6} \mathrm{H}_{6}$ were detected mass spectrometrically. $\quad\left(\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{CO}\right)_{2}$ was identified in the condensable fraction from its absorption spectrum in CCl_{4} solution (max. at $370 \mathrm{~m} \mu$). 9 A small deposit of a clear, solid film of a very insoluble and unreactive material (suggestive of a fluorinated polymer) built up on the photolysis cell front window during the photochemical runs. The solid absorbed strongly in the ultraviolet and was removed regularly to avoid serious lowering of the incident intensity. Of the common solvents employed only hot fuming HNO_{3} was successful in removing the polymer. Even in this case no apparent chemical reaction with the polymer was involved, but a prolonged treatment promoted the detachment of the solid film from the quartz wall. The amounts of material formed were too small to enable analysis. No indications of SiF_{4} and CF_{4} were found mass spectrometric-
(7) E. C. Ward, Ind. Eng. Chem., Anal. Ed., 10, 169 (1938).
(8) F. E. Blacet, G. D. MacDonald and P. A. Leighton, ibid., 5, 272 (1933).
(9) N. J. Leonard, R. T. Rapala, H. J. Herzog and E. R. Blout. This Journal, 71, 2997 (1949).
ally in any of the experiments. The infrared spectrum of the condensable fraction, containing a great excess of ketone, was determined on a Perkin-Elmer double beam instrument with pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ in the reference bean. The spectrum was complex and showed absorption peaks not characteristic of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ at the following wave lengths in microns: $2.85,3.30,6.02,6.75,7.09,7.70,8.0$?, 9.1 ?, 9.3 ?, $9.75,9.93,11.1$?, 11.7, 13.5, 14.4. (The questioned numbers are of doubtful significance.) No satisfactory correlation with possible simple products such as $\mathrm{C}_{6} \mathrm{H}_{5}-$ $\mathrm{CF}_{3},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}$ or $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$, and observed products $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{8}$ was evident.

Results

Molar Absorbancy Indices.-At a given tennperature $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ vapor followed Beer's law within the experimental error over forty-fold and tenfold pressure ranges, respectively. Representative values of a_{M} are: $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ at $3130 \AA ., 73.8\left(245.1^{\circ}\right)$; at $3660 \AA ., 6.17\left(214.6^{\circ}\right)$, $11.4\left(279.9^{\circ}\right) . \mathrm{CH}_{3} \mathrm{COCF}_{3}$ at $3130 \AA ., 5.91\left(245.1^{\circ}\right)$, $6.08\left(348.2^{\circ}\right) . \quad \log _{10}\left(I_{0} / I\right)=a_{\mathrm{M}} b c ; b$ is the path length in $\mathrm{cm} . ; c$ is the molar conen.

Effect of Variables in the Photolysis of $\mathrm{C}_{6} \mathrm{H}_{\mathrm{E}}$ COCF_{3}.-Quantum yields of products in 3660 and $3130 \AA$. experiments are given in Table I. The results of runs $6-42$ are shown in graphical form only. In order to obtain reasonable quantities of $\mathrm{C}_{2} \mathrm{~F}_{6}$ the high intensity of the full arc was utilized in these experiments. The variation of product rates of formation with absorbed light intensity, concentration of ketone and temperature are summarized in Figs. 2, 3 and 5, respectively. A slow but measurable thermal reaction necessitated a small correction to the rates in the highest temperature run $\left(338.9^{\circ}\right)$. The correction amounted to the following per cent. of the total rate of each product: $\mathrm{CO}, 0.2 ; \mathrm{CF}_{3} \mathrm{H}, 0.4 ; \mathrm{C}_{2} \mathrm{~F}_{6}, 2.6$.

Table I
Quantum Yields of Products in the Photolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ ${ }_{\left[\mathrm{C}_{6} \mathrm{H}_{5}-\right.}$

Run no.	Wavelength, \AA.	$\begin{aligned} & I_{a} \\ & \times 10^{-12} \\ & \text { q./ } \\ & \text { cc.- } \\ & \text { sec. } \end{aligned}$	$\begin{gathered} {\left[\mathrm{C}_{6} \mathrm{H}_{5-}\right.} \\ \left.\mathrm{COCF}_{3}\right], \\ \text { molec. } \end{gathered}$			uantum yields-	
			Temp ${ }^{\circ} \mathrm{C}$.	$\begin{gathered} c c \\ \times 10^{-18} \end{gathered}$	CO	$\mathrm{CF}_{8} \mathrm{H}$	$\mathrm{C}_{2} \mathrm{~F}_{6}$
1	3660	8.16	214.6	1.45	$0.0004{ }^{\text {a }}$	0.003_{4}	0.00042
2	3660	11.3	279.9	1.24	$.0001^{\text {a }}$. 0072	.00014
4	3130	8.07	304.3	1.09	. 177	. 059	$.000 \overline{1}_{1}$
5	3130	8.01	157.6	1.28	0022	$.0009_{4}$	$.00001^{\text {a }}$

${ }^{a}$ Corresponds to the limit of detection.
Photolysis of Mixtures of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$.-The rates of product formation in the mixture photolyses are given in Table II. The intensity of light absorbed by component (a) in the mixture was calculated using $I_{0}\left(1-I / I_{0}\right)$ $\left(a_{\mathrm{a}} c_{\mathbf{a}}\right) /\left(a_{\mathrm{a}} c_{\mathrm{a}}+a_{\mathrm{b}} c_{\mathrm{b}}\right)$. The rate and quantum yield sums shown in the last columns were calculated from the equations

$$
\begin{gathered}
\Sigma R_{\mathrm{CH}_{3}}=R_{\mathrm{CE}_{4}}+2 R_{\mathrm{C}_{2} \mathrm{H}_{6}}+R_{\mathrm{CF}_{3} \mathrm{CH}_{3}} \\
\Sigma R_{\mathrm{CF}_{4}}=R_{\mathrm{CF}_{3} \mathrm{H}}+2 R_{\mathrm{C}_{5} \mathrm{FF}_{6}}+R_{\mathrm{CFF}_{4} \mathrm{CH}_{3}}
\end{gathered}
$$

or the similar equations involving quantum yields. Two confirmatory experiments were made on the photolysis of pure $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ under conditions favoring the chain decomposition. The results of these experiments are given in Table III. CF_{3} COCF_{3} could not be detected mass spectrometrically in the products of runs 46 and 54 although known mixture analysis proved the high sensitivity

Table II
Rates of Product Formation in the Photolysis of PUre $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and their Mixtures at $3130 \AA$.
($I_{0}=4.39 \times 10^{12} \mathrm{Q} . /$ cc.-SEC.; Temp., 245°)

Run	(Pressure, mm.)		$\begin{gathered} I_{\mathrm{a}} \times 10^{-12}, \\ \mathrm{q} . / \mathrm{cc} .-\mathrm{sec} . \end{gathered}$	$\mathrm{CO} \mathrm{CO}_{\text {Measured }}$			lec./cc.-s CF ${ }_{3} \mathrm{H}^{2}$	$\mathrm{C}_{2} \mathrm{C}_{56} \times{ }_{10}$	${ }^{-100} \mathrm{CF}_{2} \mathrm{CH}_{2}$	2RCH:	${ }^{2} \mathrm{RCF}_{8}$	इФСН:	$\boldsymbol{\Sigma \Phi C F s}$
	$\mathrm{CH}_{3} \mathrm{COCF}_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{4}$											
43^{a}	38.2	0.0	(a) 0.351	48.6	36.2	16.5	25.1	0.223	0.250	69.5	25.8	1.98	0.73
45	0.0	33.2	(b) 4.07	158	0.0	0.0	21.0	. 410	0.0	0.0	21.8	0.0	. 054
44	38.2	33.2	(a) 0.349										
			(b) 3.79	324	26.1	20.5	76.2	. 598	1.82	68.9	79.2		
Rate sums runs 43 and 45:				207	36.2	16.5	46.1	. 633	0.250	69.5	47.6		
46^{a}	82.0	0.0	(a) 0.665	117	35.7	43.3	56.7	. 176	. 410	123	$57 . \overline{0}$	1.85	. 86
47	82.0	29.8	(a) 0.746										
			(b) 3.39	420	39.5	50.7	116	. 317	. 433	141	117		
Rate sums runs 45 and 46 :				275	35.7	43.3	77.7	. 586	. 410	123	79.3		
$49^{\text {a }}$	60.0	0.0	(a) 0.520	85.6	36.5	28.6	43.6	1.10	2.02	95.7	47.8	1.84	. 92
$\overline{5} 1$	60.0	31.6	(a) 0.549										
			(b) 3.59	319	30.9	33.4	96.0	1.36	0.856	98.6	99.6		
Rate sums runs 45 and 49:				244	36.5	28.6	64.6	1.51	2.02	95.7	69.6		

${ }^{a} I_{0}$ was lowered in these runs by using uniform density filters so that the intensity of light absorbed by $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ was essentially the same in the $\mathrm{CH}_{3} \mathrm{COCF}_{3}-\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ mixture runs which followed.

Table III
Quantum Yields of Products in the Photolysis of $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ at $3130 \AA$.

In Fig. 2 it is seen that the rate of $\mathrm{C}_{2} \mathrm{~F}_{6}$ formation is directly proportional to the absorbed light intensity, $R_{\mathrm{C}_{4} \mathrm{~F}_{0}}=k I_{\mathrm{a}}$. If 9 is the dominant mode of $\mathrm{C}_{2} \mathrm{~F}_{6}$ formation $R_{\mathrm{C}_{8} \mathrm{~F}_{6}}$ will be given by

$$
\begin{equation*}
R_{\mathrm{C}_{2} \mathrm{~F}_{6}}=k_{9}\left[\mathrm{CF}_{3}\right]^{2}=k I_{\mathrm{s}} \tag{11}
\end{equation*}
$$

If 10 alone leads to $\mathrm{C}_{2} \mathrm{~F}_{6}$ then

$$
\begin{equation*}
R_{C_{2} \mathrm{~F}_{\mathrm{s}}}=k_{10}\left[\mathrm{CF}_{8}\right]=k I_{\mathrm{a}} \tag{12}
\end{equation*}
$$

The rate of $\mathrm{CF}_{3} \mathrm{H}$ formation

$$
\begin{equation*}
R_{\mathrm{CF}_{3} \mathrm{H}}=\left[\mathrm{CF}_{3}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}\right] k_{8} \tag{13}
\end{equation*}
$$

is approximately proportional to $I_{\mathrm{a}}{ }^{1 / 2}$ at the high light intensities and tends toward a direct proportionality to I_{a} at the lowest intensities. These results point to the dominance of $\mathrm{C}_{2} \mathrm{~F}_{6}$ formation by 9 at the high intensities (combine 11 and 13) and by 10 at the low intensities (combine 12 and 13). In the experiments with varied temperature and concentration the intensities were maintained in the high range where 9 predominates.

In Fig. 4 the rate function $R_{\mathrm{CF}_{3} \mathrm{H}} / R_{\mathrm{C}_{2} \mathrm{Fe}_{6}}{ }^{1 / 2}$ is seen to have a linear dependence on the concentration of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$, a result consistent with $\mathrm{CF}_{3} \mathrm{H}$ and $\mathrm{C}_{2} \mathrm{~F}_{6}$ formation in reactions 8 and 9 . From these

Fig. 2.-The effect of absorbed light intensity on the rates of formation of gaseous products in the photolysis of $\mathrm{C}_{6} \mathrm{H}_{5}$ COCF_{3} vapor using the full mercury arc: temperature, 289°; $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}\right], 1.46 \times 10^{18}$ molec./cc.
data the ratio of the rate constants $k_{8} / k_{9}{ }^{1 / 2}$ is estimated to be 5.6×10^{-12} (cc./molec.-sec. $)^{1 / 2}$ at the temperature 289°. Comparable values from other systems at this temperature are $k_{5} / k_{9}{ }^{1 / 2}, 6.4 \times$ $10^{-10} ; k_{4} / k_{14},{ }^{1 / 2} 8.7 \times 10^{-12}, 2 \mathrm{CH}_{3} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(14)^{3}$;

Fig. 3.-The effect of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}\right]$ on the rates of formation of gaseous products in the photolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ using the full mercury arc: temperature, $289^{\circ} ; I_{\mathrm{a}}, 41.6 \times$ 10^{12} to $59.5 \times 10^{12} \mathrm{q}$. $/ \mathrm{cc}$.-sec. from the lowest to the highest concentration, respectively.

$\left[\mathrm{CF}_{3} \mathrm{COC}_{6} \mathrm{H}_{5}\right] \times 10^{-18}$, molecules $/ \mathrm{cc}$.
Fig. 4.-The effect of $\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}\right]$ on the rate function $R_{\mathrm{CF}_{3} \mathrm{H}} / R_{\mathrm{C}_{2} \mathrm{~F}_{6}}{ }^{1 / 2}$: photolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ with full mercury arc; teinperature, 289°.
$k_{13} / k_{14}^{1 / 2}, 1.4 \times 10^{-12}, \mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{4}+$ $\mathrm{C}_{6} \mathrm{H}_{5}(1 \overline{5}) .{ }^{10} \quad$ The function $R_{\mathrm{CF}_{3} \mathrm{H}} / R_{\mathrm{C}_{2} \mathrm{~F}_{6}}{ }^{1 / 2} \quad\left[\mathrm{C}_{6} \mathrm{H}_{5}-\right.$ $\left.\mathrm{COCF}_{3}\right]$, equal to $k_{8} / k_{9}{ }^{1 / 2}$ in terms of the suggested mechanism, is plotted versus $1 / T$ in Fig. $\overline{0}$. The rather large scatter is primarily the result of the
(10) A.F. Trotman-Dickenson and I. W. R. Steacie, J. Chem. Phys. 19, 32! (1951).

Fig. 5.- The Arrhenius plot of the rate function, $R_{\mathrm{CF}_{3} \mathrm{H}} /$ $R_{\mathrm{C}_{2} \mathrm{~F}_{6}}{ }^{1 / 2}\left[\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{COCF}_{3}\right]$; photolyses of $\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{COCF}_{3}$ with full mercury arc.
inaccuracy in the analysis of small quantities of $\mathrm{C}_{2} \mathrm{~F}_{6}$, but it may reflect as well a small variable con-

Table IV

Compartson of the Activation Energy for H.Abstrac. tion by CH_{3} and $\mathrm{CF}_{\text {; }}$

Reaction	$\underset{\text { kcal./mole }}{E_{\mathrm{a}}-E_{\mathrm{e} / 2}}$	$\underset{\substack{\text { kcal. } \\ \text { macle }}}{\Delta E y_{1}}$
$\mathrm{CF}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3} \rightarrow \mathrm{CF}_{3} \mathrm{H}+$		
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCF}_{3}$	7.2	2.0
$\mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \rightarrow \mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5}{ }^{10}$	(1).2	
$\begin{aligned} & \mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \rightarrow \mathrm{CF}_{3} \mathrm{H}+ \\ & \mathrm{CH}_{3} \mathrm{COCF}_{3}^{3} \end{aligned}$	6.6	23
$\begin{gathered} \mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \\ \mathrm{CH}_{2} \mathrm{COCF}_{3}{ }^{3} \end{gathered}$	8.8	
$\mathrm{CF}_{3}+\mathrm{CH}_{4} \rightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{CH}_{3}{ }^{18,11}$	9.5-10.3	2.6-4.73
$\mathrm{CH}_{3}+\mathrm{CH}_{4} \rightarrow \mathrm{CH}_{4}+\mathrm{CH}_{3}{ }^{17,12}$	12.9-14.0	
$\mathrm{CF}_{3}+\mathrm{C}_{6} \mathrm{H}_{6} \rightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{3}{ }^{11}$	7.5	2.9
$\mathrm{CH}_{3}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{2} \mathrm{H}_{5}{ }^{13}$	10.4	
$\mathrm{CF}_{3}+n-\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{C}_{4} \mathrm{H}_{9}{ }^{16}$	5.5	2.8
$\mathrm{CH}_{3}+n-\mathrm{C}_{4} \mathrm{H}_{10} \rightarrow \mathrm{CH}_{4}+\mathrm{C}_{4} \mathrm{H}_{9}{ }^{13}$	8.3	
$\mathrm{CF}_{3}+\mathrm{CF}_{3} \mathrm{CHO} \rightarrow \mathrm{CF}_{3} \mathrm{H}+\mathrm{CF}_{3} \mathrm{CO}^{14}$	6.2-6.5	(1). 3-1
$\mathrm{CH}_{3}+\mathrm{CH}_{3} \mathrm{CHO} \rightarrow \mathrm{CH}_{4}+\mathrm{CH}_{3} \mathrm{CO}^{25}$	7. 5 -6. 8	

[^1] Chem., 33, 743 (1955)
(12) J. R. McNesby and A. S. Gordon, This Journal, 76, 4190 (1954).
(13) A. F. Trotman-Dickenson, J. R. Birchard and E. W. R. Steacie J. Chem. Phys., 19, 163 (1951).
(14) R. E. Dodd, University of Durham, private communication.
(15) (a) D. H. Volman and R. K. Brinton, J. Chem, Phys., 20, 1764 (1952); (b) P. Ausloos and E. W. R. Steacie, Can. J. Chen. 33, 3] (1950)
(16) G. O. Pritchard, H. O. Pritchard and A. F. Trotman-Dickenson, Chemistry and Industry, 564 (1955)
(17) F. S. Dainton and D. T. McElcheran. Trans. Faraday. Sen, 51. 0.3 (195.3)
tribution from some heterogeneous reaction such as 10. The least squares line through all the points gives $E_{8}-E_{9} / 2=7.2 \pm 0.5 \mathrm{kcal} . / \mathrm{mole}$. The ratio of collision theory P-factors $P_{8} / P_{9} / 2$ is in the range 10^{-4} to 10^{-6}, assuming the collision diameters for CF_{3} and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ to be 4.0 and $6.3 \AA$., respectively. The range of values is a consequence of the uncertainty in the effective reaction volume (about 90% of the incident light was absorbed in these runs). Summarized in Table IV are the activation energy differences $E_{\mathrm{a}}-E_{\mathrm{c}} / 2$, activation energy for H -abstraction minus one-half that for the combination reaction of CH_{3} or CF_{3}, and ΔE, equal to the difference between the activation energies for H abstraction by CH_{3} and CF_{3} minus $E_{14} / 2$ plus $E_{9} / 2$, for a series of related reactions of CH_{3} and CF_{3}. It is unlikely that the possible configurational rearrangement ${ }^{3}$ or dipole-dipole interaction ${ }^{11}$ of combining CF_{3} radicals would lead to an energy barrier as great as $4.0 \mathrm{kcal} . /$ mole for reaction 9 , and it is probable that E_{14} is near zero. Therefore the present results and all available data show that the activation energy for similar H -abstraction reaction is lower for CF_{3} than for CH_{3} radicals. The exact magnitude of the activation energy differences must await further study of the CF_{3} combination reaction. The difference in activation energy is probably not a consequence of a difference in the $\mathrm{C}-\mathrm{H}$ bond dissociation energies of CH_{4} and $\mathrm{CF}_{3} \mathrm{H}$; $D_{\mathrm{CF}_{3}-\mathrm{H}}$ appears to be approximately equal to $D_{\mathrm{CH}_{3}-\mathrm{H} .}{ }^{18}$ It may reflect the higher electron affinity of the CF_{3} radical. ${ }^{19}$

Addition of CF_{3} to $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$.-One of the most striking features of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ photolysis is the large unbalance between CO and CF_{3}-containing compounds found in the gaseous products. See Figs. 2 and 3. At 197° the ratio $R_{\mathrm{Co}} /\left(R_{\mathrm{CF}_{3} \mathrm{H}}+\right.$ $\left.2 R_{\mathrm{C}_{2} \mathrm{~F}_{8}}\right)=26.1$. This ratio decreases regularly with increase in temperature; at 339° it is 2.8 . It is apparent that the major reaction of CF_{3} radicals in this system is not 9 or 10 but some reaction of low activation energy forming condensable products. Ayscough, Polanyi and Steacie ${ }^{11}$ proposed that CF_{3} radicals react with a quartz cell to form CO_{2} and SiF_{4} under certain conditions. This reaction is not important in this system since no SiF_{4} could be detected in the present work. (A trace of CO_{2} of unknown origin was found in some of the runs.) A chemically inert, clear film of polymeric material formed on the cell walls during photolysis. The small quantity of the solid precluded the possibility of chemical analysis, but the extremely inert character of the deposit is suggestive of a fluorinated polymer. It may be suggested that the polymer formation and the large unbalance in CF_{3}-containing gaseous compounds are related, and that polymer formation may be initiated by the addition of CF_{3} radicals to the aromatic nucleus of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$

$$
\mathrm{CF}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3} \longrightarrow \mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3} \longrightarrow
$$

polymer

It has been demonstrated by Szwarc and co-work-
(18) G. O. Pritchard, H. O. Pritchard, H. I. Schiff and A. F. Trot-man- Dickenson, Chemistry and Industry, 896 (1955).
(19) H. O. Pritchard, J. B. Pyke and A. F. Trotman-Dickenson, This Journal, 77, 2629 (1955).
ers^{20} that CH_{3} radical addition to various aromatic systems occurs in isoöctane solutions. The expected higher electron affinity of the CF_{3} radical would favor a more pronounced interaction of CF_{3} with aromatic systems than that found for CH_{3}. Presumably 16 results in the transformation of the the benzene nucleus to a substituted cyclohexadiene free radical which leads to polymer in further undefined reactions. Reasonable speculation concerning the mechanism of polymerization is impossible at present.

Other Secondary Reactions.-Indirect evidence for the presence of $\mathrm{CF}_{3} \mathrm{CO}$ radicals is obtained in consideration of the effect of ketone concentration on the rates of product formation from runs at 289°, Fig. 3. $R_{\mathrm{CF}_{8} \mathrm{H}}$ and $R_{\text {Co }}$ increase markedly as the concentration of ketone increases. However, the ratio $R_{\mathrm{CO}} /\left(R_{\mathrm{CF}_{3} \mathrm{H}}+2 R_{\mathrm{C}_{2} \mathrm{~F}_{8}}\right)$ remains essentially constant: $5.95,5.88,6.00$ and 5.60 for $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right.$ COCF_{3}] of $0.212,0.564,1.00$ and 1.45×10^{18} molec./cc., respectively. This ratio is also relatively insensitive to changes in I_{a} (data from Fig. 2) : $5.60,6.06,5.62$ and 5.13 at I_{a} values of $59.5,33.3$, 23.2 and 10.1×10^{12} q./cc.-sec., respectively. These facts are consistent with the proposed reaction sequence and the additional reactions 17 and 18 .

$$
\mathrm{CF}_{3} \mathrm{CO}(+ \text { wall }) \longrightarrow \text { non-volatile product (}+ \text { wall) }
$$

In terms of this mechanism the increase in $R_{\mathrm{CF}_{3} \mathrm{H}}$ and $R_{\text {co }}$ with increase in the concentration of $\mathrm{C}_{6} \mathrm{H}_{5}$ COCF_{3} reflects the increasing importance of 17. High concentrations would favor 17 since diffusion to the wall during the lifetime of the radical is less likely under these conditions. Presumably the CF_{3} radical formed in 17 would react primarily by 8 and 16 (to a minor extent by 9). Since the rates of both 8 and 16 are proportional to $\left[\mathrm{CF}_{3}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5}\right.$ COCF_{3}], the ratio of the rates of these reactions would remain constant with change in $\left[\mathrm{C}_{6} \mathrm{H}_{5}\right.$ $\left.\mathrm{COCF}_{3}\right]$, and the ratio of $R_{\mathrm{CO}}\left(R_{\mathrm{CF}_{\mathrm{s}} \mathrm{H}}+2 R_{\mathrm{C}_{2} \mathrm{~F}_{\mathrm{s}}}\right)$ would be unchanged as observed. (Essential to these arguments is the assumption that the extent of reaction 20 is not a function of ketone concentration, or that 20 is a negligible source of CO at 289°.)

The observed products $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2}$ and $\mathrm{C}_{6} \mathrm{H}_{6}$ can be accounted for by conventional reactions

$$
\begin{align*}
& 2 \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \longrightarrow\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2} \tag{19}\\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{CO} \tag{20}
\end{align*}
$$

$\mathrm{C}_{6} \mathrm{H}_{5}+\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{COCF}_{3} \longrightarrow$

The steady-state concentration of $\mathrm{C}_{6} \mathrm{H}_{5}$ in this system is apparently very low since no $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}, \mathrm{C}_{6} \mathrm{H}_{5}$ $\mathrm{COC}_{6} \mathrm{H}_{5}$ or $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ would be found in the condensable products. $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}\right)_{2}$ was present in the products in easily detectable quantities following photolysis at 275°. The high thermal stability of the benzoyl radical, to which this points, is in marked contrast to the demonstrated thermal instability of the acetyl radical in pure acetone vapor at temperatures above $100^{\circ}{ }^{21}$; this difference is consistent

[^2]with the expected resonance stabilization of the benzoyl radical.

The Primary Process in $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ Photolysis. -- The results are consistent with the occurrence of two primary processes

$$
\begin{equation*}
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}+h \nu \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CO}+\mathrm{CF}_{3} \tag{I}
\end{equation*}
$$

The identification of bibenzoyl in the reaction products gives strong evidence for I. This process is analogous to that suggested for acetophenone photodecomposition. ${ }^{22}$ Process II is indicated by the evidence cited for the presence of $\mathrm{CF}_{3} \mathrm{CO}$ radicals in this system. The relative importance of these cannot be estimated from the present data. Trifluorotoluene could not be detected in the condensable products. Thus a third possible primary process leading to $\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{5}$ and CO in a concerted mechanism must be unimportant.

No single mechanism seems completely satisfying in the explanation of the low quantum yields. $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{COCF}_{3}$ vapor absorbs strongly at $3660 \AA$. (curve B of Fig. 1), but the efficiency of gaseous product formation is extremely low. The data of Table I shows that little CO and other gaseous products are formed even at 280° (Φ co <0.0001). Low quantum yields are also found at $3130 \AA$.; even in photolyses at 304°, less than 20% of the absorbing molecules decompose to give gaseous molecules. It would be rather surprising if reaction 16 , its analog involving $\mathrm{CF}_{3} \mathrm{CO}$, and recombination reactions are fast enough to exclude essentially all of reactions 8,9 and 17. An alternative proposal of an excited molecule mechanism has certain inconsistencies. One might expect that fluorescence would play some part in the deactivation process. In qualitative experiments there was no visible fluorescence when pure $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ vapor at 3 mm . and 25° was irradiated with $3660-3000 \AA$. light. Furthermore there is no indication of collisional deactivation in the observed effect of increased ketone pressure on the rate of product formation. The choice of detailed mechanism of the primary process must await further study.

The Photolysis of Mixtures of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ and $\mathrm{CH}_{3} \mathrm{COCF}_{3}$.-The original plan of selective photolysis of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$ in mixtures with $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ by irradiation with $3660 \AA$. light was discarded because of the apparent low efficiency of CF_{3} radical formation at this wave length. Both ketones absorb $3130 \AA$. light, but the absorbancy indices are greatly different. (Compare the spectra of $\mathrm{CH}_{3}-$ COCF_{3} and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3}$, curve B , in Fig. 1.) In tiew of this, mixture photolyses were made at 3130 \AA. in an attempt to test the suggested $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ photolysis mechanism (reactions $1-7$). Runs were made with the pure components alone and then in combination. The incident light intensity was lowered with filters in the pure $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ runs so that approximately equal numbers of quanta were absorbed by the $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ when alone or in the mixture photolyses (see Table II). Thus the rate of CH_{3} radical formation as a result of light absorption should be about the same in both runs. The ratio of the rate constants k_{5} / k_{8} at 245° is esti-

[^3]mated to be $126 .{ }^{3}$ If this is used as an estimate of the relative rates of the corresponding CH_{3} reactions no significant increase in $R_{\mathrm{CH}_{3}}$ should be found in mixture photolyses as a consequence of reaction 22
$$
\mathrm{CH}_{3}+\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCF}_{3} \longrightarrow \mathrm{CH}_{4}+\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCF}_{3}
$$

An increase in rates of formation of CH_{3}-containing species in the mixture photolyses would provide evidence for CH_{3} generation from CF_{3}. In Table II the product rates for each pure component are summed and can be compared with the rates in the mixture photolyses for three sets of data at three different $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ concentrations. The interpretation of the results is not simple, but several general features are clear. The rates of CO and $\mathrm{CF}_{3} \mathrm{H}$ formation are much higher in the mixture photolysis than in the rate sums of individual runs. The effect of increased concentration on the decomposition of the $\mathrm{CF}_{3} \mathrm{CO}$ radical is consistent with this finding. The rates of formation of $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{6}$ and $\mathrm{CH}_{3} \mathrm{CF}_{3}$ in mixture photolyses are slightly larger in some runs, slightly smaller in others, but no consistent trend is apparent. Conflicting conclusions are possible concerning the CH_{3} steady-state concentration in these systems. It is evident that the simple reaction schemes which appear to explain pure component photolyses are not entirely adequate for mixture photolyses. The most reliable criterion of change in rate of CH_{3} formation in these systems available from the present data is the sum of the rates of the total CH_{3}-containing species which appear as gaseous products, $\Sigma R_{\mathrm{CH}_{3}}$. This function is very nearly the same in the mixture and sums of individual pure component runs when account is taken of the slightly different intensities of light absorbed by the $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ component. However there are two effects which have not been considered in this simple interpretation which would tend to mask the regeneration of CH_{3} radicals from CF_{3} in this system. A reaction similar to 16 is expected to occur to lower the CH_{3} concentration in the mixture photolyses. In addition, the photolysis of $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ appears to involve an excited state which would undergo more extensive collisional deactivation at the higher pressures involved in the mixture photolyses. ${ }^{3}$ The fact that gaseous $\mathrm{CH}_{3}-$ containing species were formed at essentially the same rate in pure $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ and in the mixtures provides very indirect evidence that CF_{3} radicals regenerate CH_{3} by interaction with CH_{3} COCF_{3}. Obviously, a more definitive test of this point is necessary.
The Mechanism of $\mathrm{CH}_{3} \mathrm{COCF}_{3}$ Photolysis.-The chain mechanism involving CH_{3}-containing molecules and CO is confirmed by the quantum yields of products and quantum yield summations shown in runs 43, 46 and 49 of Table II and runs 53 and 54 of Table III. The results of run 54 at 348° are most striking; $31.6 \mathrm{CH}_{3}$-groups appear in the gaseous products for every quantum of light absorbed by $\mathrm{CH}_{3} \mathrm{COCF}_{3}$. A previously undetected short chain involving CF_{3}-containing gaseous products is indicated also. The relatively large quantum yield of $\mathrm{CF}_{3} \mathrm{CH}_{3}$ suggests that the reaction

$$
\begin{equation*}
\mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{CF}_{3} \mathrm{CH}_{3}+\mathrm{COCF}_{3} \tag{23}
\end{equation*}
$$

may become important at the very high temperatures. Although the general chain photodecomposition scheme suggested by Sieger and Calvert ${ }^{3}$ is in accord with this work, the specific reactions 1 and 2 appear unlikely; a careful analysis of the products of run 46 and 54 failed to reveal detectable quantities of $\mathrm{CF}_{3} \mathrm{COCF}_{3}$, although the method of analysis was sufficiently sensitive to find even 5% of the total quantity expected from the reaction scheme. There is no obvious alternative mechanism to replace 1 and 2. The undefined reaction sequence
$\mathrm{CF}_{3}+\mathrm{CH}_{3} \mathrm{COCF}_{3} \longrightarrow \mathrm{X} \longrightarrow$
$\mathrm{CH}_{3}+$ non-volatile products
must be subjected to further experimentation. The absolute magnitude of the quantum yields of products of run 54 differ from those found by Sieger
and Calvert ${ }^{3}$ using a different photolysis system but under similar conditions of temperature, pressure, wave length and at a slightly higher light intensity; for example, $\Phi_{\text {Co }}$ was 1.95 compared to 7.42 found in this work. The variability of the length of the chain process with change in reaction system coupled with the fact that homogeneous reactions similar to $1,2,3,23$ and 24 have not been observed in analogous systems, suggest strongly that these chain steps are at least in part heterogeneous reactions.
Acknowledgment.-Grateful acknowledgment is made of research fellowships provided R. M. S. by the Allied Chemical and Dye Corporation and the Socony-Vacuum Oil Company, and a Grant-in-Aid from E. I. du Pont de Nemours and Company, Inc.
Columbus, Ohio

[Contribution from the Department of Chemistry, University of Wisconsin]

Comparison of the Organic Products from the $\mathrm{Br}^{80 \mathrm{~m}}$ (4.4 hr .) $\xrightarrow{\text { I.T. }} \mathrm{Br}^{80}$ (18 min .) Process in the Propyl Bromides with Those from the $\mathrm{Br}^{79}(\mathrm{n}, \gamma) \mathrm{Br}^{80}$ Process

By Gerrit Levey ${ }^{1}$ and John E. Willard Received November 11, 1955

It has been shown previously that activation of Br_{2} by the (n, γ) and by the isomeric transition processes in solutions of Br_{2} in CCl_{4} yields the same distribution of organic products. The present paper shows a similar result for five products $\left(\mathrm{CH}_{2} \mathrm{Br}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}, n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}, i-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}\right.$ and $\left.1,2-\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}\right)$ from the (n, γ) and I. T. activation of bromine in $n-\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$ and $i-\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{Br}$, thus lending support to the conclusion that the product determining steps are the same for the two methods of activation.

Introduction

The $\mathrm{Br}^{79}(\mathrm{n}, \gamma) \mathrm{Br}^{80}\left(4.4 \mathrm{hr}\right.$. and 18 min .) and Br^{81} $(\mathrm{n}, \gamma) \mathrm{Br}^{82}(36 \mathrm{hr}$.) processes yield product atoms with a recoil energy sufficient to break chemical bonds ${ }^{2}$ (some 4000 kcal . per mole if all of the nuclear energy is lost as one photon) and, in at least an appreciable fraction of the events, a positive charge. ${ }^{3}$ The isomeric transition of $\mathrm{Br}^{80 \mathrm{~m}}(\mathrm{Br})^{80 \mathrm{~m}}(4.4$ I.T.
hr.) $\left.\longrightarrow \mathrm{Br}^{80}(18 \mathrm{~min}).\right)$ gives daughter atoms with an average charge ${ }^{4}$ of +10 . This charge may spread over the parent molecule and as a result of coulombic repulsion cause the bromine atom to split out with considerable kinetic energy (about 80 e.v. in the case of Br_{2} with +10 charge). In liquid or solid organic media bromine atoms which have ruptured their parent bonds as a result of either the (n, γ) process or the isomeric transition process are able to enter organic combination, apparently by producing a random fragmentation ${ }^{2}$ of bonds in the surrounding molecules and combining with radicals so formed. From the available facts about such processes it is impossible to say whether the kinetic energy or the energy from charge neutralization, or both, are primarily responsible for the chemical fate of the tagged atom, although it has been customary to assume that recoil energy is the impor-

[^4]tant factor in (n, γ) activation and charge in activation by isomeric transition.

If the determining factor in chemical activation by the two processes is the same, the distribution of chemical products would be expected to be the same in the same chemical system; if the activating step is different, the product distribution might be different. It has been shown ${ }^{5}$ that the ratios of $\mathrm{CCl}_{3} \mathrm{Br}$ to $\mathrm{CCl}_{2} \mathrm{Br}_{2}$ and to higher boiling components in the organic products from the (n, γ) and isomeric transition processes of Br_{2} in CCl_{4} are identical within the accuracy of the determinations. This is not, however, conclusive evidence that the mechanism of chemical activation is the same for the two processes. It may be that the possible types of bond rupture in a simple molecule like CCl_{4} are so few that fragmentation occurs in an identical fashion whether it results from charge neutralization processes or from the dissipation of recoil energy. It was therefore important to test more complex molecules than the $\mathrm{Br}_{2}-\mathrm{CCl}_{4}$ system. In the work reported below normal and isopropyl bromide have been chosen for this purpose because the yields of a variety of products from the (n, γ) process on these compounds have been studied carefully. ${ }^{6,7}$

Experimental

Liquid Br_{2} irradiated in the CP5 pile of the Argonne National Laboratory at a flux of 2×10^{12} neutrons $\mathrm{cm},^{-2} \mathrm{sec} .^{-1}$
(5) J. F. Hornig and J. E. Willard, This Journal, 75, 461 (1953)
(6) M. S. Fox and W. F. Libby, J. Chem. Phys., 20, 487 (1952).
(7) J. C. W. Chien, Ph.D. Thesis, University of Wisconsin. 1954.

[^0]: (4) W. A. Noyes, Jr., and I. A. Leigliton, "The Photochemistry of Gases," Reinhold Publ. Corp., New York, N. Y., 1941, p. 69.
 (5) R. E. Hunt and W. Davis, Jr., This Jovenal, 69, 1415 (1947).
 i9) C. A. Parker, Proc. Rov. Soc. (London), A220, 104 (1953).

[^1]: (11) P. B. Ayscongh, J. C. Polanyi and E. W. R. Steacie. Can. J.

[^2]: (20) M. Levy and M. Szwarc, J. Chem. Phys., 22, 1621 (1954) M. Levy, M. Steinberg and M. Szwarc, This Jovrnal, 76, 3439 (1954); M. Szwarc, J. Chem. Phys., 23, 204 (1955); M. Levy and M. Szwarc, This Journal, 77, 1949 (1955).
 (21) D. S. Herr and W. A. Noyes. Jr.. ibid., 62, 2052 (19407.

[^3]: (22) H. H. Glazebrook and T. G. Pearson, J. Chem. Soc., 589 (1939)

[^4]: (1) Department of Chemistry, Berea College, Berea, Kentucky.
 (2) For reviews of the literature on chemical effects of nuclear transformations see: J. E. Willard, Ann. Rev. Nucl. Sci., 3, 193 (1953); J. E. Willard, Ann. Rev. Phys. Chem., 6, 141 (1955).
 (3) S. Wexler and T. H. Davies, J. Chem. Phys., 20, 1688 (1952).
 (4) S. Wexlef and T, H. Davies, Phys. Rev., 88, 1203 (1953).

